

Paul Whitaker – Director of Strategy – paul@ksat.no

Svalbard –The World's Largest and Northernmost Ground Station

- 78°North
- Unique location,14 of 14 passes
- 24/7 operations
- Established 1997
- Redundant fiber cables (Tbps)
- > 50 antenna systems (3m 13m)
- 30 employees

Antarctica – Troll Station – Norwegian Polar Institute

- 72°S 2°E in Antarctica.
- Svalbard & Troll = access ~every 40 minutes
- Download frequency = 26 times per day per satellite (14 + 12)
- Inland location = stable climate / good weather conditions.

KSAT's Growing Global Network – "New Space" Support

27-Feb-19 /6/

Who Uses The KSAT Network?

249 commercial non-GEO spacecraft launched in the US in 2017 → 243 of those spacecraft are on the KSAT network

	Percentage of Spacecraft on the KSAT Network	# of Spacecraft launched in 2017 on the KSAT Network	# of Spacecraft launched in 2017	
US Commercial Spacecraft	98%	243	3	249
Global Commercial Spacecraft	89%	246	3	275

98% of the U.S. non-GEO commercial industry
Over 30,000 Satellite Passes Every Month

Example Case - Near Real Time - EMSA

- KSAT typically delivered over 400 satellite reports per month to EMSA in 2018 (both oil spill and vessel detection)
- SAR sensor mix includes RADARSAT-2, Sentinel, TerraSAR-X
- EMSA is very strict on delivery timing –penalties for not delivering services on time (< 20 mins for notification / 30 mins for complete analysis).
- NRT proficiency has typically been 85-95%
- But our network serves more than just Europe...deliveries in Australia average less then 60 minutes from satellite pass!

Satellite AIS

Satellite AIS

27.02.2019

Example from July 15, 2018

- 12 vessels seen on AIS*
- 1,061 vessels seen with SAR

*Satellite AIS from Norwegian sources - indicative only

Page 11

Satellite AIS

Presentation of Mr. Mas Achmad Santosa, Coordinator for Special Advisors, Presidential Task Force to Combat Illegal Fishing - Arctic Frontiers, Tromsø Norway, January 24th 2018

OUR FINDINGS TURN THE COMPLIANCE PYRAMID ON ITS HEAD

Stop Illegal Fishing (2017) FISH-i Africa: Our Future. Gaborone, Botswana - September 27, 2017 https://stopillegalfishing.com/wp-content/uploads/2017/09/FISH-i_Africa_Our_future_WEB.pdf

Optical Imagery

Track 1

Date of the shot: 2017-05-12T09:04:32Z

 Latitude:
 03°53'06" S

 Longitude:
 010"55'46" E

 Confidence:
 PROBABLE

 Speed:
 STOPPED

Type (STANAG): TMO (Merchant ship, tanker)

 Length:
 237.0 m

 Width:
 31.0 m

 Heading:
 230.0°

 Comment:
 Anchored

 Track Pointing Type:
 Full

Track 3

Date of the shot: 2017-05-12T09:04:32Z

 Latitude:
 03°56′20" S

 Longitude:
 010°53′22" E

 Confidence:
 PROBABLE

 Speed:
 STOPPED

Type (STANAG): TMT (Merchant ship, tug, ocean-going)

 Length:
 53.0 m

 Width:
 11.0 m

 Heading:
 23.0°

 Comment:
 MPSV

 Track Pointing Type:
 Full

KSAT can now provide high resolution optical imagery in near real time...but can't make the sun shine

Synthetic Aperture Radar (SAR)*

^{*}Gaofen-3 (C-Band Chinese SAR) is expected to be operational by end of February for NRT delivery

^{*} PAZ is on orbit now in calibration – expected to be operational by Q1 2019

Why So Much SAR?

27-Feb-19 /15/

Thailand Example - Multi-Mission NRT

Thailand Example - Multi-Mission NRT

RADARSAT-2 (~ 8 m Sept 26 – 23:12 UTC)

Tandem-X (ScanSAR – 19 m Sept 28 – 11:48 UTC)

Cosmo-SkyMed (Stripmap – 5 m Sept 27 – 23:45 UTC)

Cosmo-SkyMed (Stripmap – 5 m Sept 28 – 10:37 UTC)

Cosmo-SkyMed (Stripmap – 5 m Sept 28 – 10:36 UTC)

Sentinel 1A (IW ~ 22 m Sept 26 – 11:27 UTC)

RADARSAT-2 (~ 8 m Sept 28 – 11:23 UTC)

Thailand Example - VMS Correlation – September 26, 2018

VMS

Example Report Details

, #	Position 09°59′45″N 097°22′21″E Heading(SAR) 002 Length(SAR) 122 m Width(SAR) 23 m	Confidence	1.0	•	Position 10*22*43*N 007* Heading(SAR) 224 Length(SAR) 40 m Width(SAR) 10 m	*27'04'E Confidence	0.8
1	Position 09'49'17'N 09''49'56"E Meading(\$AR) 003 Length(\$AR) 207 m Width(\$AR) 35 m	Confidence	1.0	, j	Position 10*11*56*N 006* Heading(SAR) 312 Length(SAR) 84 m Width(SAR) 33 m	'22'13'E Confidence	1.0
	Position 09°20'00'N 09°160'57"E Heading(SAR) 022 Length(SAR) 59 m Width(SAR) 16 m	Confidence	0.5		Position 06°27'40"N 007' Heading(SAR) 012 Length(SAR) 37 m Width(SAR) 19 m	'54'56'E Confidence	0.8
	Position 09'29'39'N 097'5751'E Meading(SAR) 048 Length(SAR) 26 m Width(SAR) 12 m	Confidence	0.5		Position 09°23'41"N 007' Heading(SAR) 192 Length(SAR) 37 m Width(SAR) 16 m	'54'44'E Confidence	0.5
#vi	Position 09"34"40"N 09"150"03"E Heading(SAR) 025 Length(SAR) 43 m Width(SAR) 16 m	Confidence	0.5		Position 08°58'49"N 097 Heading(SAR) 025 Length(SAR) 70 m Width(SAR) 21 m	*33'24'E Confidence	0.8
	Position 09°04'40"N 097°39'35"E Heading(\$AR) 008 Length(\$AR) 89 m Width(\$AR) 7 m	Confidence	0.8		Position 09'48'05'N 097 Heading(SAR) 048 Length(SAR) 20 m Width(SAR) 10 m	*53'43"E Confidence	0.5
	Position 09°52'18"N 097°55'48"E Heading(SAR) 001 Length(SAR) 59 m Width(SAR) 15 m	Confidence	0.5	•	Position 09°52'43"N 000' Heading(SAR) 175 Length(SAR) 93 m Width(SAR) 19 m	*02*28*E Confidence	0.8

VIIRS - Visible Infrared Imaging Radiometer – September 28

And Of Course, We See More Than Just Boats...

2 Spill Detection

Detection							
Detection Time	Central Position			Category			
2018-09-26 22:38:20.1	07139139N 103123IS4NE			Α			
Area	Length Width			Orientation			
9.17 km²	34.30 km 2.01 km 339.59*						
Classification							
Shape	linear feathered	red Centrals strong					
Outline	fragmented	Edge		variable			
Wind related	no match	Texture		smooth			
Possible source	likely source						
Repeated observation	folios						
Natural slicks in vicinity	false						
Met-ocean data							
Туре	Value	Value Source					
nymote	2.0 m/s from 219.8" SAR occur wind						
Comment							
N/A							
Possible sources	T			-			
Position.	Object Name		MMIL	Type	Confidence		

Coming Soon...MicroSAR

KONGSBERG

- Constellation of ~10 small SAR satellites optimized for ship detection
- · Simultaneous AIS and SAR
- KSAT's local ground station network
- Features:
 - Resolution
 - 2m x 4m resolution
 - Improved detection capability
 - · Possibility for classification
 - Coverage:
 - > 200 km swath width
 - Minimum 10% duty cycle (equivalent to 4000 km total swath length)
 - Temporal resolution
 - · Constellation of satellites optimized for low revisit time at AOIs
 - < 3 hours average revisit globally with approximately 10 satellites
 - Latency
 - · Downlink at first ground station after acquisition
 - Local processing / detection at (every) ground station
 - Maximum 30 minutes between acquisition and service delivery
- Optimized high data rate down link (up to 6 Gb/s)
- Goal is to use < 60 minutes from order reception to satellite command upload and 45 to 90 minutes between order and image acquisition

Quick Aside: Why High resolution For Ship Detection?

- Ships are single pixel or small "dot"
- False positives: Any floating object + noise
- 10-15 m resolution (Strip Map)
- "Simple" amplitude detection
- Can differentiate between small /large
- But still some false positives / erroneous lengths

- Full feature discrimination
- Improved detection
- Classification possible

